The Calculus
eBook - ePub

The Calculus

A Genetic Approach

Otto Toeplitz

Buch teilen
  1. English
  2. ePUB (handyfreundlich)
  3. Über iOS und Android verfügbar
eBook - ePub

The Calculus

A Genetic Approach

Otto Toeplitz

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

When first published posthumously in 1963, this bookpresented a radically different approach to the teaching of calculus.In sharp contrast to the methods of his time, Otto Toeplitz did not teach calculus as a static system of techniques and facts to be memorized. Instead, he drew on his knowledge of the history of mathematics and presented calculus as an organic evolution of ideas beginning with the discoveries of Greek scholars, such as Archimedes, Pythagoras, and Euclid, and developing through the centuries in the work of Kepler, Galileo, Fermat, Newton, and Leibniz. Through this unique approach, Toeplitz summarized and elucidated the major mathematical advances that contributed to modern calculus.Reissued for the first time since 1981 and updated with a new foreword, this classic text in the field of mathematics is experiencing a resurgence of interest among students and educators of calculus today.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist The Calculus als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu The Calculus von Otto Toeplitz im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Matematica & Matematica generale. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

3
DIFFERENTIAL AND INTEGRAL CALCULUS
18. TANGENT PROBLEMS
Tangent problems are easier than area problems. The Greeks knew very well how to construct a tangent at a point P of a circle (Fig. 63) by drawing the perpendicular to the radius OP. In the case of the ellipse, the construction of the tangent ab rested on the theorem that the tangent at P forms equal angles with the two focal radii drawn from P (Fig. 64). Similarly, in the case of the hyperbola.
FIG. 63
FIG. 64
(The Greeks, in fact, treated many tangent problems. Archimedes in his treatise on the spiral29—the one which we still call the Spiral of Archimedes—deals with nothing else but the construction of the tangent and the calculation of the area of a sector of the spiral.)
When in modern times—meaning the first half of the seventeenth century—Greek mathematics was resumed, numerous new tangent problems were treated. But, because a curve was now understood as a geometrical representation of a computational expression, the method of dealing with tangent problems was changed, and a new element entered into them. For instance, in the case of the parabola, which is the geometric representation of the function y = x2, we find the tangent at the point E(1, 1) (Fig. 65). We take a value of x close to 1 and call it x1; the corresponding value of the function is y1 = x21. Let E1 be the point (x1, y1); let φ1 be the angle which the secant EE1 makes with the horizontal through E; then we have
And here is the new method that we wanted to introduce by the example. We regard the tangent as the limiting position of the secant EE1, which results when x1 approaches 1 indefinitely.
So much for the principle. With simple mathematical manipulation, we find
FIG. 65
FIG. 66
If x1 approaches 1, x1 + 1 approaches 2; this means that if φ is the angle between the tangent and the x-axis
tan φ = 2.
Thus, in the limit, the opposite side is exactly twice as long as the adjacent side. Hence we need not even draw the parabola to construct the tangent at E. We simply connect with E the midpoint of the segment with ends 0 and 1.
In the same way we find for any other x that, as x1 → x,
So, for
we have tan φ = 1 which means that the tangent at
is constructed by connecting
with
. For drawing the parabola, the knowledge of these two tangents is more useful than the plotting of many of its points (Fig. 66).
In Section 12 we saw how Fermat determined
Since
for x → 1, this becomes n + 1. This same principle gives the general construction of the tangent at any point of the curve y = xn. As x1 → x,
Next we introduce a new symbol and a new terminology. Quite generally we shall write
and call the value f′(x) the “derivative” of f at x. It is equal to tan φ where φ is the inclination to the x-axis of the tangent (Fig. 67).
FIG. 67
For these “derivatives” we shall now obtain some very general results, which correspond to the two principles of Cavalieri (see above, Sec. 13).
1. Let y = f(x) + g(x).
Then we have
which leads to
2. Let y = ρf(x).
Then we have
which leads to
3. For more than two summands these two results give
4. Applying this to the case
and considering that
we obtain
This means that we can draw tangents at every point of any curve c1x + c2x2 + . . . +cnxn.
Fermat, whose achievements in the theory of areas we discussed previously, was a master also in tangent problems. He knew fully how to handle them in situations like those above, as well as for many other curves; therefore, he is often said to have known differential calculus.
19. INVERSE TANGENT PROBLEMS
In contrast with area problems, those concerning tangents presented no difficulties, no matter what curves were taken, until the problem was inverted; that is, the tangent was given and the curve had to...

Inhaltsverzeichnis