Analytic Number Theory for Undergraduates
eBook - ePub

Analytic Number Theory for Undergraduates

Heng Huat Chan

Compartir libro
  1. 128 páginas
  2. English
  3. ePUB (apto para móviles)
  4. Disponible en iOS y Android
eBook - ePub

Analytic Number Theory for Undergraduates

Heng Huat Chan

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

This book is written for undergraduates who wish to learn some basic results in analytic number theory. It covers topics such as Bertrand's Postulate, the Prime Number Theorem and Dirichlet's Theorem of primes in arithmetic progression.

The materials in this book are based on A Hildebrand's 1991 lectures delivered at the University of Illinois at Urbana-Champaign and the author's course conducted at the National University of Singapore from 2001 to 2008.

Contents:

  • Facts about Integers
  • Arithmetical Functions
  • Averages of Arithmetical Functions
  • Elementary Results on the Distribution of Primes
  • The Prime Number Theorem
  • Dirichlet Series
  • Primes in Arithmetic Progression


Readership: Final-year undergraduates and first-year graduates with basic knowledge of complex analysis and abstract algebra; academics.

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es Analytic Number Theory for Undergraduates un PDF/ePUB en línea?
Sí, puedes acceder a Analytic Number Theory for Undergraduates de Heng Huat Chan en formato PDF o ePUB, así como a otros libros populares de Mathematik y Zahlentheorie. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Editorial
WSPC
Año
2009
ISBN
9789814365277
Categoría
Mathematik
Categoría
Zahlentheorie
Chapter 1
The Fundamental Theorem of Arithmetic
1.1 Least Integer Axiom and Mathematical Induction
Let
Z = {0, ±1,±2,…}
be the set of integers. The Least Integer Axiom (see [10]), also known as the Well Ordering Principle, states that there is a smallest integer in every nonempty subset of non-negative integers. It is useful in establishing the following result.
Theorem 1.1. Let S (1), S(2),…, S(n),…be statements, one for each integer n ≥ 1. If some of these statements are false, then there is a first false statement.
Proof. Set
images
Since at least one statement is false, T is nonempty. By the Least Integer Axiom, there exists a smallest integer n in T. This implies that S(n) is the first false statement.
From Theorem 1.1, we deduce the Principle of Mathematical Induction.
Theorem 1.2. Let S(n) be statements, one for each n ≥ 1. Suppose that the following conditions are satisfied by S(n):
(a) The statement S(1) is true.
(b) If S(n) is true, then S(n + 1) is true.
Then S(n) is true for all integers n ≥ 1.
Proof. Suppose that S(n) is not true for all integers n ≥ 1. Then for some positive integer k ≥ 1, S(k) is false. By Theorem 1.1, there is a first false statement, say S(m). By the fact that S(1) is true, we conclude that m ≠ 1. Furthermore, by the minimality of m, we observe that S(j) is true for 1 < jm – 1. Now, by (b), S(m – 1) is true implies that S(m) is true. This contradicts the assumption that S(m) is false and we conclude that the statements S(n) is true for all positive integers n ≥ 1.
We may replace 1 in Theorem 1.2 (a) by any integer m. In other words, we can modify Theorem 1.2 as
Theorem 1.3. Let m be an integer. Let S(n) be statements, one for each integer nm. Suppose that the following two conditions are satisfied:
(a) The statement S(m) is true.
(b) If S(n) is true, then S(n + 1) is true.
Then S(n) is true for all integers nm.
We end this section with another version of the Principle of Mathematical Induction. The proof of this version is similar to the proof of Theorem 1.2 and we leave it as an exercise for the readers.
Theorem 1.4. Let m be an integer. Let S(n) be statements, one for each integer nm. Suppose that the following conditions are satisfied:
(a) S(m) is true and
(b) if S(k) is true for all m ≤ k ≤ n then S(n + 1) is true.
Then S(n) is true for all integers nm.
1.2 Division Algorithm
Theorem 1.5 (Division Algorithm). Let a and b be integers such that b > 0. Then there exist unique integers q and r with
a = bq + r, where 0 ≤ r < b.
Proof. Let
images
Note that since
images
w...

Índice