Analytic Number Theory for Undergraduates
eBook - ePub

Analytic Number Theory for Undergraduates

Heng Huat Chan

Partager le livre
  1. 128 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

Analytic Number Theory for Undergraduates

Heng Huat Chan

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

This book is written for undergraduates who wish to learn some basic results in analytic number theory. It covers topics such as Bertrand's Postulate, the Prime Number Theorem and Dirichlet's Theorem of primes in arithmetic progression.

The materials in this book are based on A Hildebrand's 1991 lectures delivered at the University of Illinois at Urbana-Champaign and the author's course conducted at the National University of Singapore from 2001 to 2008.

Contents:

  • Facts about Integers
  • Arithmetical Functions
  • Averages of Arithmetical Functions
  • Elementary Results on the Distribution of Primes
  • The Prime Number Theorem
  • Dirichlet Series
  • Primes in Arithmetic Progression


Readership: Final-year undergraduates and first-year graduates with basic knowledge of complex analysis and abstract algebra; academics.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Analytic Number Theory for Undergraduates est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Analytic Number Theory for Undergraduates par Heng Huat Chan en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Mathematik et Zahlentheorie. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Éditeur
WSPC
Année
2009
ISBN
9789814365277
Chapter 1
The Fundamental Theorem of Arithmetic
1.1 Least Integer Axiom and Mathematical Induction
Let
Z = {0, ±1,±2,
}
be the set of integers. The Least Integer Axiom (see [10]), also known as the Well Ordering Principle, states that there is a smallest integer in every nonempty subset of non-negative integers. It is useful in establishing the following result.
Theorem 1.1. Let S (1), S(2),
, S(n),
be statements, one for each integer n ≄ 1. If some of these statements are false, then there is a first false statement.
Proof. Set
images
Since at least one statement is false, T is nonempty. By the Least Integer Axiom, there exists a smallest integer n in T. This implies that S(n) is the first false statement.
From Theorem 1.1, we deduce the Principle of Mathematical Induction.
Theorem 1.2. Let S(n) be statements, one for each n ≄ 1. Suppose that the following conditions are satisfied by S(n):
(a) The statement S(1) is true.
(b) If S(n) is true, then S(n + 1) is true.
Then S(n) is true for all integers n ≄ 1.
Proof. Suppose that S(n) is not true for all integers n ≄ 1. Then for some positive integer k ≄ 1, S(k) is false. By Theorem 1.1, there is a first false statement, say S(m). By the fact that S(1) is true, we conclude that m ≠ 1. Furthermore, by the minimality of m, we observe that S(j) is true for 1 < j ≀ m – 1. Now, by (b), S(m – 1) is true implies that S(m) is true. This contradicts the assumption that S(m) is false and we conclude that the statements S(n) is true for all positive integers n ≄ 1.
We may replace 1 in Theorem 1.2 (a) by any integer m. In other words, we can modify Theorem 1.2 as
Theorem 1.3. Let m be an integer. Let S(n) be statements, one for each integer n ≄ m. Suppose that the following two conditions are satisfied:
(a) The statement S(m) is true.
(b) If S(n) is true, then S(n + 1) is true.
Then S(n) is true for all integers n ≄ m.
We end this section with another version of the Principle of Mathematical Induction. The proof of this version is similar to the proof of Theorem 1.2 and we leave it as an exercise for the readers.
Theorem 1.4. Let m be an integer. Let S(n) be statements, one for each integer n ≄ m. Suppose that the following conditions are satisfied:
(a) S(m) is true and
(b) if S(k) is true for all m ≀ k ≀ n then S(n + 1) is true.
Then S(n) is true for all integers n ≄ m.
1.2 Division Algorithm
Theorem 1.5 (Division Algorithm). Let a and b be integers such that b > 0. Then there exist unique integers q and r with
a = bq + r, where 0 ≀ r < b.
Proof. Let
images
Note that since
images
w...

Table des matiĂšres