Analytic Number Theory for Undergraduates
eBook - ePub

Analytic Number Theory for Undergraduates

Heng Huat Chan

Buch teilen
  1. 128 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfĂŒgbar
eBook - ePub

Analytic Number Theory for Undergraduates

Heng Huat Chan

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

This book is written for undergraduates who wish to learn some basic results in analytic number theory. It covers topics such as Bertrand's Postulate, the Prime Number Theorem and Dirichlet's Theorem of primes in arithmetic progression.

The materials in this book are based on A Hildebrand's 1991 lectures delivered at the University of Illinois at Urbana-Champaign and the author's course conducted at the National University of Singapore from 2001 to 2008.

Contents:

  • Facts about Integers
  • Arithmetical Functions
  • Averages of Arithmetical Functions
  • Elementary Results on the Distribution of Primes
  • The Prime Number Theorem
  • Dirichlet Series
  • Primes in Arithmetic Progression


Readership: Final-year undergraduates and first-year graduates with basic knowledge of complex analysis and abstract algebra; academics.

HĂ€ufig gestellte Fragen

Wie kann ich mein Abo kĂŒndigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kĂŒndigen“ – ganz einfach. Nachdem du gekĂŒndigt hast, bleibt deine Mitgliedschaft fĂŒr den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich BĂŒcher herunterladen?
Derzeit stehen all unsere auf MobilgerĂ€te reagierenden ePub-BĂŒcher zum Download ĂŒber die App zur VerfĂŒgung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die ĂŒbrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den AboplÀnen?
Mit beiden AboplÀnen erhÀltst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst fĂŒr LehrbĂŒcher, bei dem du fĂŒr weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhĂ€ltst. Mit ĂŒber 1 Million BĂŒchern zu ĂŒber 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
UnterstĂŒtzt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nÀchsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Analytic Number Theory for Undergraduates als Online-PDF/ePub verfĂŒgbar?
Ja, du hast Zugang zu Analytic Number Theory for Undergraduates von Heng Huat Chan im PDF- und/oder ePub-Format sowie zu anderen beliebten BĂŒchern aus Mathematik & Zahlentheorie. Aus unserem Katalog stehen dir ĂŒber 1 Million BĂŒcher zur VerfĂŒgung.

Information

Verlag
WSPC
Jahr
2009
ISBN
9789814365277
Chapter 1
The Fundamental Theorem of Arithmetic
1.1 Least Integer Axiom and Mathematical Induction
Let
Z = {0, ±1,±2,
}
be the set of integers. The Least Integer Axiom (see [10]), also known as the Well Ordering Principle, states that there is a smallest integer in every nonempty subset of non-negative integers. It is useful in establishing the following result.
Theorem 1.1. Let S (1), S(2),
, S(n),
be statements, one for each integer n ≄ 1. If some of these statements are false, then there is a first false statement.
Proof. Set
images
Since at least one statement is false, T is nonempty. By the Least Integer Axiom, there exists a smallest integer n in T. This implies that S(n) is the first false statement.
From Theorem 1.1, we deduce the Principle of Mathematical Induction.
Theorem 1.2. Let S(n) be statements, one for each n ≄ 1. Suppose that the following conditions are satisfied by S(n):
(a) The statement S(1) is true.
(b) If S(n) is true, then S(n + 1) is true.
Then S(n) is true for all integers n ≄ 1.
Proof. Suppose that S(n) is not true for all integers n ≄ 1. Then for some positive integer k ≄ 1, S(k) is false. By Theorem 1.1, there is a first false statement, say S(m). By the fact that S(1) is true, we conclude that m ≠ 1. Furthermore, by the minimality of m, we observe that S(j) is true for 1 < j ≀ m – 1. Now, by (b), S(m – 1) is true implies that S(m) is true. This contradicts the assumption that S(m) is false and we conclude that the statements S(n) is true for all positive integers n ≄ 1.
We may replace 1 in Theorem 1.2 (a) by any integer m. In other words, we can modify Theorem 1.2 as
Theorem 1.3. Let m be an integer. Let S(n) be statements, one for each integer n ≄ m. Suppose that the following two conditions are satisfied:
(a) The statement S(m) is true.
(b) If S(n) is true, then S(n + 1) is true.
Then S(n) is true for all integers n ≄ m.
We end this section with another version of the Principle of Mathematical Induction. The proof of this version is similar to the proof of Theorem 1.2 and we leave it as an exercise for the readers.
Theorem 1.4. Let m be an integer. Let S(n) be statements, one for each integer n ≄ m. Suppose that the following conditions are satisfied:
(a) S(m) is true and
(b) if S(k) is true for all m ≀ k ≀ n then S(n + 1) is true.
Then S(n) is true for all integers n ≄ m.
1.2 Division Algorithm
Theorem 1.5 (Division Algorithm). Let a and b be integers such that b > 0. Then there exist unique integers q and r with
a = bq + r, where 0 ≀ r < b.
Proof. Let
images
Note that since
images
w...

Inhaltsverzeichnis