Stretchable Electronics
eBook - ePub

Stretchable Electronics

  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Stretchable Electronics

About this book

On a daily basis, our requirements for technology become more innovative and creative and the field of electronics is helping to lead the
way to more advanced appliances. This book gathers and evaluates the materials, designs, models, and technologies that enable the fabrication of fully elastic electronic devices that can tolerate high strain. Written by some of the most outstanding scientists in the field, it lays down the undisputed knowledge on how to make electronics withstand stretching. This monograph provides a review of the specific applications that directly benefit from highly compliant electronics, including transistors, photonic devices, and sensors. In addition to stretchable devices, the topic of ultraflexible electronics is treated, highlighting its upcoming significance for the industrial-scale production of electronic goods for the consumer.

Divided into four parts covering:

* Theory
* Materials and Processes
* Circuit Boards
* Devices and Applications

An unprecedented overview of this thriving area of research that nobody in the field - or intending to enter it - can afford to miss.

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes! You can use the Perlego app on both iOS or Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app.
Yes, you can access Stretchable Electronics by Takao Someya in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Materials Science. We have over one million books available in our catalogue for you to explore.
Part I
Theory
1
Theory for Stretchable Interconnects
Jizhou Song and Shuodao Wang

1.1 Introduction

A rapidly growing range of applications demand electronic systems that cannot be formed in the conventional manner on semiconductor wafers. The most prominent example is stretchable electronics, which has a performance equal to established technologies that use rigid semiconductor wafers, but in formats that can be stretched and compressed. It enables many application possibilities such as flexible displays [1], electronic eye camera [2–4], conformable skin sensors [5], smart surgical gloves [6], and structural health monitoring devices [7]. There are primarily two directions to make stretchable electronics. One is to use intrinsically stretchable materials such as organic materials [8–13]. However, the electrical per­formance of organic semiconductor materials is relatively poor comparing with the well-developed, high-performance inorganic electronic materials. The other direction to achieve stretchable electronics is to use conventional semiconductors, such as silicon, and make the system stretchable. The main challenge here is to make silicon-based structures stretchable since the brittleness of silicon makes it almost impossible to be stretched. Many researches bypassed this difficulty by using stretchable interconnects [14–22].
One of the most intuitive approaches to develop stretchable interconnects is to exploit out-of-plane deflection in thin layers to accommodate strains applied in the plane. Figure 1.1 illustrates some examples of this concept. In the first case (Figure 1.1a) [17, 24, 25] of stretchable wavy ribbons, the initially flat ribbons are bonded to a prestrained elastomeric substrate. The prestrain can be induced by mechanical (or thermal) stretch along the ribbon directions. Releasing the prestrain causes a compression in the ribbon, and this compression leads to a nonlinear buckling response and results in a wavy profile. When the wavy structure is subject to stretches, the amplitudes and periods of the waves change to accommodate the deformation. In the second case (Figure 1.1b) of popup structure [26], the ribbons can be designed to bond the prestretched elastomeric substrate only at certain locations. When the prestrain is released, the ribbon on the nonbonded regions delaminates from the substrate and forms popup profile. Compared to Figure 1.1a, this layout has the advantage that the wavelengths can be defined precisely with a level of engineering control to have higher stretchability.
Figure 1.1 SEM images of (a) stretchable wavy ribbons, (b) popup structure, (c) noncoplanar mesh design with straight interconnects, and (d) noncoplanar mesh design with serpentine interconnects.
(Reprinted with permission from Ref. [15] Copyright 2007 American Institute of Physics and Ref. [23] Copyright 2009 American Vacuum Society).
c01f001
Combining the stretchable interconnects in Figure 1.1a (or Figure 1.1b) with rigid device islands, an interconnect-island structure [16, 19, 20, 22] can be developed to accommodate the deformations. Mechanical response to stretching or compression involves, primarily, deformations only in these interconnects, thereby avoiding unwanted strains in the regions of the active devices. Lacour et al. [16] and Kim et al. [19] developed a coplanar mesh design by using the wavelike interconnects, which are bonded with the substrate. Although such a coplanar mesh design can improve the stretchability...

Table of contents

  1. Cover
  2. Related Titles
  3. Title page
  4. Copyright page
  5. Preface
  6. List of Contributors
  7. Part I: Theory
  8. Part II: Materials and Processes
  9. Part III: Circuit Boards
  10. Part IV: Devices and Applications
  11. Index