Chiroptical Spectroscopy
eBook - ePub

Chiroptical Spectroscopy

Fundamentals and Applications

Prasad L. Polavarapu

Buch teilen
  1. 430 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Chiroptical Spectroscopy

Fundamentals and Applications

Prasad L. Polavarapu

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

This book details chiroptical spectroscopic methods: electronic circular dichroism (ECD), optical rotatory dispersion (ORD), vibrational circular dichroism (VCD), and vibrational Raman optical activity (VROA). For each technique, the text presents experimental methods for measurements and theoretical methods for analyzing the experimental data. It also includes a set of experiments that can be adopted for undergraduate teaching laboratories. Each chapter is written in an easy-to-follow format for novice readers, with necessary theoretical formalism in appendices for advanced readers.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Chiroptical Spectroscopy als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Chiroptical Spectroscopy von Prasad L. Polavarapu im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Ciencias físicas & Química industrial y técnica. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Verlag
CRC Press
Jahr
2016
ISBN
9781315357195
1
Polarized Light
Interaction between electromagnetic radiation and matter is the basis of a broad research area that is generally categorized as spectroscopy. When the matter under consideration is made up of chiral molecules (see Chapter 2), a special branch of spectroscopy, labeled as chiroptical spectroscopy, becomes pertinent. The words “chiroptical spectroscopy” can be construed to mean the study of chiral systems using optical spectroscopy methods. To understand the principles of chiroptical spectroscopy, it is necessary to gain insight into the properties of electromagnetic radiation, chiral molecules, and the interaction between them. These concepts form the basis for the starting chapters in this book.
1.1 Introduction to Light
Visible light represents electromagnetic radiation that can be detected with the human eye. This statement automatically raises thoughts about “invisible” light. To distinguish between visible and invisible light, we need to consider the wave properties of electromagnetic radiation. A wave (see Figure 1.1a) is associated with periodic oscillatory variation of its height (referred to as amplitude) in time. Two identical points in a wave constitute one cycle. For example, two consecutive crest points, two consecutive trough points, or three consecutive zero points constitute one cycle or one wave. If an observer stands at one point and watches the waves pass by in time, the number of cycles passed in a given second is labeled as frequency (ν). The unit of frequency is cycles/second (or simply s−1), which is designated as hertz (Hz; 1 Hz = s−1). A cosine wave with unit amplitude is represented by the function cos2πν t, where t stands for time in seconds. This cosine wave is shown in Figure 1.1a, where the definition of a cycle is depicted. The alternate representations of frequency of oscillation are wavelength and wavenumber. If a stationary wave is held along the z axis (see Figure 1.1b) and the distance between three consecutive zero points (or between two crests or between two troughs) of that wave is measured, then that distance is labeled as wavelength and represented by symbol λ [expressed as meters/cycle or simply as meters (m)]. This definition of wavelength is shown in Figure 1.1b, where a wave with unit amplitude, represented by the cosine function cos2πz/λ, is depicted. The product of wavelength and frequency of a wave is equal to the speed of that wave c, which is expressed as m·s−1:
Image
FIGURE 1.1
(a) Depiction of the amplitude and cycle of an oscillating cosine wave, cos 2πνt, with unit amplitude as a function of time. (b) Depiction of the amplitude and wavelength λ of an oscillating cosine wave, cos (2πz/λ), propagating along the z axis with unit amplitude.
c=λv=mcycle×cycles=ms=ms-1
(1.1)
If an electromagnetic wave passes through a medium with refractive index nm, then the speed of electromagnetic wave changes as cm = c/nm. Then, Equation 1.1 modifies as cm = λmν, where λm is the wavelength of the wave in that medium (Levine 2009). For the current purposes, consider the waves propagating in vacuum, where nm = 1. Just as the number of cycles per second is labeled as frequency, the number of waves per unit length is labeled as wavenumber (v¯). Since one wave occupies a length of λ, wavenumber is equal to the reciprocal of wavelength. Therefore, v¯ = 1/λ, and its units are expressed in m−1. Thus, an alternate form of Equation 1.1 is as follows:
v=v¯c=m1×ms=s-1
(1.2)
The wavelength λ (or equivalently frequency ν or wavenumber v¯) of a wave determines the properties of that wave. Human eyes respond to the electromagnetic waves of wavelength between ~400 and 800 nm (1 nm = 10−9 m), and this portion of electromagnetic radiation is referred to as the visible light. The different colors that human eyes can recognize (violet, indigo, blue, green, yellow, orange, and red, abbreviated as VIBGYOR) are the components of the visible light. The portions of electromagnetic radiation with wavelengths greater or less than the wavelengths in the visible light range are invisible to the human eye.
From here onward, the word “light” will be used to represent electromagnetic radiation (regardless of whether it is visible or invisible to the human eyes). The speed of light in vacuum is a constant, 2.99792458 × 108 m·s−1. Wavelength and frequency of a light wave are related through Equations 1.1 and 1.2. The different wavelength ranges of electromagnetic radiation constitute different portions of the electromagnetic “spectrum.” Selected portions of electromagnetic spectrum and their names are summarized in Table 1.1.
Wavelength is expressed in nanometers (nm) for the ultraviolet–visible region and micrometers (μm) for the infrared region. Wavenumber is usually expressed in cm−1. For example, a light wave with 200-nm wavelength represents ultraviolet light and corresponds to a wavenumber of 50,000 cm−1 (1200×109m×100cmm=50,000cm−1) and a frequency of 1.5 × 1015 Hz (50,000cm−1×2.99792458×1010cms=1.5×1015s1).
TABLE 1.1
Selected Regions of E...

Inhaltsverzeichnis